|全面详解机器视觉三维成像方法及应用 - 励展(深圳)展览有限公司
深圳电子展
2024年11月6-8日
深圳国际会展中心(宝安)

半导体展nepcon|全面详解机器视觉三维成像方法及应用

机器视觉三维成像目前应用最多的光学成像法包括:飞行时间法、激光扫描法、激光投影成像、立体视觉成像等。


半导体展nepcon了解到,飞行时间3D成像飞行时间(TOF)相机每个像素利用光飞行的时间差来获取物体的深度。目前较成熟的飞行时间面阵相机商业化产品包括Mesa Imaging AG SR-4000, PMD Technologies Cam Cube 3.0,微软Kinect V2等。

 

TOF成像可用于大视野、远距离、低精度、低成本的3D图像采集,其特点是:检测速度快、视野范围较大、工作距离远、价格便宜,但精度低,易受环境光的干扰。


扫描3D成像扫描3D成像方法可分为扫描测距、主动三角法、色散共焦法。
扫描测距利用一条准直光束通过测距扫描整个目标表面实现3D测量,测量精度较高;主动三角法基于三角测量原理,利用准直光束、一条或多条平面光束扫描目标表面完成3D成像。但测量复杂结构面形时容易产生遮挡,需要通过合理规划末端路径与姿态来解决。


色散共焦法通过分析反射光束的光谱,获得对应光谱光的聚集位置。色散共焦法适合测量透明物体、高反与光滑表面的物体。但缺点是速度慢、效率低;用于机械手臂末端时,可实现高精度3D测量,但不适合机械手臂实时3D引导与定位,因此应用场合有限。

 

半导体展nepcon了解到,结构光投影3D成像结构光投影三维成像是目前机器3D视觉感知的主要方式。结构光成像系统是由若干个投影仪和相机组成。基本工作原理是:投影仪向目标物体投射特定的结构光照明图案,由相机摄取被目标调制后的图像,再通过图像处理和视觉模型求出目标物体的三维信息。


根据结构光投影次数划分,结构光投影三维成像可以分成单次投影3D和多次投影3D方法。单次投影3D主要采用空间复用编码和频率复用编码形式实现。由于单次投影曝光和成像时间短,抗振动性能好,适合运动物体的3D成像。但是深度垂直方向上的空间分辨率受到目标视场、镜头倍率和相机像素等因素的影响,大视场情况下不容易提升。


多次投影3D具有较高空间分辨率,能有效地解决表面斜率阶跃变化和空洞等问题。但也有如下不足之处:1)对于连续相移投影方法,3D重构的精度容易受到投影仪、相机的非线性和环境变化的影响;2)抗振动性能差,不合适测量连续运动的物体;3)实时性差;不过随着投影仪投射频率和CCD/CMOS图像传感器采集速度的提高,多次投影方法实时3D成像的性能也在逐步改进。
对于粗糙表面,结构光可以直接投射到物体表面进行视觉成像;但对于大反射率光滑表面和镜面物体3D成像,结构光投影不能直接投射到被成像表面,需要借助镜面偏折法。


半导体展nepcon了解到,偏折法对于复杂面型的测量,通常需要借助多次投影方法,因此和多次投影方法有同样的缺点。另外偏折法对曲率变化大的表面测量有一定的难度,因为条纹偏折后反射角的变化率是被测表面曲率变化率的2倍,因此对被测物体表面的曲率变化比较敏感,很容易产生遮挡难题。

 

立体视觉3D成像立体视觉一般情况下是指从不同的视点获取两幅或多幅图像重构目标物体3D结构或深度信息。

立体视觉可分为被动成像和主动成像两种形式。
被动视觉成像依赖相机接收到的由目标场景产生的光辐射信息,常用于特定条件下的3D成像场合,如室内等光线变动不大的场景,或几何规则明显,控制点比较容易确定的工业零部件等。


主动立体视觉是利用光调制(如编码结构光、激光调制等)照射目标场景,对目标场景表面的点进行编码标记,然后对获取的场景图像进行解码,以便可靠地求得图像之间的匹配点,再通过三角法求解场景的3D结构。主动立体视觉的优点是抗干扰性能强、对环境兼容性强(如通过带通滤波消除环境光干扰),3D测量精度、重复性和可靠性高;缺点是对于结构复杂的场景容易产生遮挡等问题。

 

三维成像工业应用

基于结构光测量技术和3D物体识别技术开发的机器人3D视觉引导系统,可对较大测量深度范围内散乱堆放的零件进行全自由的定位和拾取。相比传统的2D视觉定位方式只能对固定深度零件进行识别且只能获取零件的部分自由度的位置信息,具有更高的应用柔性和更大的检测范围。可为机床上下料、零件分拣、码垛堆叠等工业问题提供有效的自动化解决方案。

 

 

文章来源:机器视觉课堂

Baidu
map